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This work introduces a theoretical model for the description of charged xenon clusters. It is based on the
assumption that the charge migrates inside the cluster by isotropic hopping through a Hubbard Hamiltonian
and treats Xe atoms as classical polarizable particles. For their interaction we use a 2-body potential to
which we add charge-charge, charge-dipole, and dipole-dipole interactions. The calculations are carried
out within the ground state approximation. We are primarily concerned with the following issues: (1) the
role that the quantum degree of freedom plays on the magic number pattern, and (2) the question of dimer
formation inside the clusters. To investigate these questions we perform simulated annealing and molecular
dynamics calculations on neutral and singly-charged clusters of up to 25 atoms. Our results confirm that the
magic number pattern is related to the geometric structure of the clusters, as previously published (Surf. Sci.
1985, 156, 370). Further, we demonstrate that the magic number pattern is not affected by the electrostatic
interactions or the quantum effect on the charge distribution of the electric charge. Our model does not
result in any dimer formation. We calculate the binding energies and the adiabatic ionization potential and
find that they are very close to the experimental values.

I. Introduction

Microclusters, which inhabit a state somewhere between that
of gas and condensed matter, are especially useful for increasing
our understanding of the nucleation process from a microscopic
point of view. In particular, rare gas clusters have proven
particularly amenable to both theoretical and experimental study
because their valence electron shell is closed and their interac-
tions are well represented by simple 2- and 3-body potentials.2,3

This latter property allows efficient computer simulations of
these systems, the results of which can be readily compared to
available experimental results.4-8 At the same time, however,
the theoretical discussion of exactly what the experimental
results measure is complicated by the fact that experiments
measure clusters’ stability using mass spectroscopy in which
the neutral clusters are ionized.
In typical experiments, clusters of many different sizes are

produced. The size of clusters is usually expressed in terms of
the cluster number. This is the number of bonded atoms in a
cluster. In analysis, there are distinct peaks in the mass
spectroscopy for some cluster sizes. The number of atoms in
these particularly stable clusters is calledmagic number.
In this work we present a theoretical model for charged xenon

clusters for the purpose of exploring the significance of quantum
effects in dynamic studies of charged clusters. Further, we test
how appropriate the Hubbard Hamiltonian is for these physical
systems. Thus, we model these clusters as classical aggregates
consisting of polarizable Xe atoms which interact through a
2-body potential, and a positively charged quantum hole that
hops between the Xe atoms according to a Hubbard Hamilto-
nian.9 The motion of the charge is about 2 orders of magnitude
faster than the motion of the nuclei. This model, therefore,

makes it possible to distinguish and explore quantum effects
apart from classical ones.
Theoretical research on clusters has focused mainly on

understanding two issues. The first issue is the understanding
of the magic numbers (in terms of the interatomic potential and
geometrical structure of these clusters). The second related issue
is the effect of ionization on the abundance of clusters of various
sizes. Finally, theoretical studies ask, are the magic numbers
for neutral and ionized clusters different? The magic number
pattern can be interpreted by assuming that the clusters have
icosahedral geometry1 (see Figures 4, 5 and 6). With one
exception, the sublimation energy calculated with these struc-
tures possesses maxima for clusters containing magic numbers
of atoms of Xe,10 preionized Ar,11 or Ba.12 The only discrep-
ancy is for the magic number 25; according to the icosahedral
geometry closed shells, a cluster with 26 atoms should be more
stable. Conversely, this approach does not correctly predict the
numbers for Ar (ionized after the formation of the cluster) and
Kr.13

The effect of ionization on the stability of the clusters is
associated with the migration of the charge inside the cluster
and its final localization. Almost all of the theoretical efforts
to understand the dynamics of charged clusters depend on the
assumption that, for a short period of time after ionization
occurs, the charge, through its migration, is trapped between
two atoms because of the polarization field that it causes. That
is to say, a dimer forms. This idea is supported by both
experimental and theoretical studies of rare gas solids. The
formation of this dimer explains the difference between the drift
mobility of electrons and holes inside these solids.14-17 The
potential well of the charged rare gas dimers is very deep, and
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therefore a considerable amount of energy is released during
their formation. The relaxation of this binding energy will
increase the kinetic energy of the rest of the atoms inside the
clusters, and some of them will evaporate. In such cases the
experimentally-observed magic numbers represent the relative
stability only of the charged clusters. They do not provide any
information about the stability of the corresponding neutral
clusters. On the other hand, the formation of the dimer would
cause dislocations in the structure of the cluster. Taking these
dislocations into account, we cannot necessarily associate the
observed magic numbers with the closed shells of the icosahe-
dral geometry. Molecular dynamics calculations have been
presented by other authors in the past.4-8 In general, these
calculations have used a Lennard-Jones 6-12 potential for the
neutral atom interactions and an explicit calculation of the
charge-dipole and dipole-dipole interactions. They presume
that a dimer is formed, and include in their classical Hamilto-
nians an appropriate intramolecular potential for the atoms that
constitute the dimer. The charge migration was taken into
account explicitly in one publication7 by using Monte Carlo
equilibration steps for the location of the dimer between
successive molecular dynamics steps.
Our approach to this problem is to find, without making a

previous assumption, how the charge is localized inside the
cluster. We start with the same assumptions for the classical
part as the previous authors (the 2-body potential and the point-
polarizability model), and we attempt to study dimer formation
by explicitly incorporating the charge migration in our calcula-
tions. We perform molecular dynamics and simulated-annealing
calculations on small, positively charged xenon clusters. In our
results we find no evidence of any dimer formation. However,
we are able to calculate the binding energies of these clusters
and to derive from these results the adiabatic ionization
potentials, which are very close to the experimental values.18,19

We also calculate the sublimation energy for clusters of up to
23 atoms, and we concur with earlier findings that the magic
numbers 13 and 19 correspond to clusters with icosahedral
geometry for which the sublimation energy gets its maximum
values.1

II. Computational Method

A. Classical Interactions. In our calculations we employ
Beeman’s integration algorithm20 as a good compromise
between stability, accuracy, and the required computer time.
This method gives the same positions as the Verlet algorithm
and it is time reversal invariant. For the calculation of the forces
in the neutral Xe clusters we use a 2-body potential derived by
Barker, Klein, and Robetic.3 This potential was obtained by
fitting a variety of experimental data such as the dilute gas
viscosity, the second virial coefficient, the vibrational level
spacings of the dimers, and the differential collision cross
sections, along with the zero temperature, zero pressure lattice
spacing in the solid. We choose to perform our calculations
using the Barker et al. potential because of its reported
agreement with a wide range of experimental measurements.
In the majority of the previous calculations, the Lennard-Jones
6-12 potential for xenon was used. The relative features of the
two potentials are depicted in Figure 1.
The calculation of the electrostatic part of the energy is based

on the assumption that the induced dipole momentdBi(rbi) of the
Xe atom at the pointrbi is a linear function of the total electric
field at that pointEBt(rbi). Furthermore, since the Xe atoms have
their valence shell filled they do not have any preferable
polarization direction. Thus, the induced dipoles are oriented

along the direction of the field.21 Denoting byR the atomic
mean polarizability, we write

The actual electric field at each point is the sum of the
Coulombic field due to the chargesEBc(rbi) and the field generated
by the dipolesEBd(rbi):

Denoting byqj the total charge on thejth atom and withrbij )
rbi - rbj we have

Substituting eqs 1, 2, and 3 into eq 4 and rearranging results in

The above equations form a set of 3N equations for thex,y,z
components of theN dipoles. Representing alldBi’s as a 3N-
dimensional vectorD, this set can be written in matrix form:

The elementsAij andQj can be obtained directly from eq 5.

Figure 1. Xe-Xe potentials.

dBi( rbi) ) REBt( rbi) (1)

EBt( rbi) ) EBc( rbi) + EBd( rbi) (2)

EBc( rbi) ) - ∑
j*1

qj rbij

|rij|3
(3)

EBc( rbi) ) - ∑
j*1 [dBj( rbj)

|rij|3
-
3[dBj( rbj)‚ rbij] rbij

|rij|5 ] (4)

dBi( rbi) + R ∑
j*1 [dBj( rbj)

|rij|3
-
3[dBj( rbj)‚ rbij] rbij

|rij|5 ] ) R ∑
j*1

qj rbij

|rij|3
(5)

A‚D ) Q (6)
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The electrostatic energy of the system with the above-
described interactions consists of three parts:22

1. The interaction energy between the dipoles and the
Coulombic field due to the charges:

2. The interaction energy of the dipoles themselves:

where the factor1/2 prevents the double counting of each pair
of dipoles.
3. The work of polarization. To calculate the work done

by the field to separate the charges inside the induced dipole,
we first assume that the gradient of the field does not vary
significantly on the scale of the atomic dimensions and therefore
can be considered uniform inside each atom. Next we consider
that the polarizable atom acquires its final dipole moment under
the influence of an external field, smoothly switched on and
slowly increased from zero to its actual value. At each time
during this process the dipole moment will be proportional to
the applied field and the work done is

Therefore the total electrostatic energy is

We calculate theN dipoles at each time step by inversion of
the matrixA, and then we calculate the electrostatic potential
and the corresponding force. The inverse matrixA-1 is
calculated explicitly because we need it for the calculation of
the electrostatic forces, otherwise we could employ more
efficient iterative techniques for the calculation of the dipoles.
The charge is entirely localized at one Xe atom. In order to
simplify our calculations, we assume, for computational con-
venience, that the polarizability of the ion is the same as for
the neutral atoms, that is, equal to 4.1 Å3.23 The actual
polarizability of the ion is different than the polarizability of
the neutral atoms but since the field of the charge is much
stronger than the field of the induced dipoles, this approximation
does not affect the calculated electrostatic energy. We test this
by varying the value of the polarizability of the ion and we
find that the electrostatic energy remains practically the same.
The Coulombic field at the ion is taken to be zero.
In the Appendix, in order to test the validity of the classical

part of our model, we calculate the dielectric energy of a charged
dielectric sphere as a function of the distance of the charge from
the center. This energy is relative to the energy of the sphere
with the charge placed at the origin. We compare this energy
with the relative increase of the computed electrostatic energy
of charged cluster Xe55+ with close-packing geometry as the
location of the charge moves from the center to the surface of
the cluster. The agreement of the two calculations is depicted
in Figure 2. It is worth mentioning that the continuum case

energy possesses a singularity as the point charge reaches the
surface of the sphere.
B. Quantum Hamiltonian. The systems we discuss are

clusters withN - 1 neutral Xe atoms and one ion Xe+. The
migration of the charge inside the clusters occurs through
electron exchange between the neutral atoms and the ion. In
our approximation we consider that the mobile electrons of each
atom occupy an averaged, rotationally invariant electronic state
of the valence shell, which can take two possible spin values,
either s ) +1/2 or s ) -1/2. Since the electronic transitions
between these states inside the same atom do not result in
physically distinguishable states for the clusters, we consider
that at each atom there are only two mobile valence shell
electrons having opposite spin values. We call these states
mobile electronValence shell states. Therefore, we study the
rearrangements of 2N- 1 electrons in the 2N, totally available
states. It is convenient to describe our quantum mechanical
calculations using second quantization notation. The vacuum
state|0〉 is first defined as the state with no mobile valence
electrons in any of the Xe atoms in a cluster. The electron
creation,ais

†, and annihilation,ai,s, operators are defined by the
equations:

The state|i0el〉 describes an electron in a mobile valence state of
the ith Xe atom and in thes spin state. The physical meaning
of ai,s

† is that it creates an electron in the previously emptys
spin state of theith atom andai,s is that it destroys an existing
electron in thesspin state at theith Xe atom. We further define
the state|0′〉 as

Figure 2. Dielectric sphere with a single charge: Electrostatic energy
relative to the origin. (The reduced units are based on the Barker
potential.)

ais
†|0〉 ) |i0el〉s (11)

ai,s|i0el〉s) |0〉 (12)

V1 ) - ∑
i)1

N

dBi( rbi)‚EB
c( rbi) (7)

V2 ) -1/2 ∑
i)1

N

dBi( rbi)‚EB
d( rbi) (8)

V3)∫0EBt( rbi) REB′( rbi) dEB′( rbi)

) 1/2 ∑
i)1

N

dBi( rbi)‚EB
t( rbi) (9)

Vel ) V1 + V2 + V3 ) -1/2∑
i)1

N

dBi( rbi)‚EB
c( rbi) (10)
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This state represents a neutral xenon cluster. It is important to
define the normal order of the product. We follow the
convention thati increases from 1 toN, the cluster number,
and for eachi the spin states are taken in an ascending order.
We introduce the quantum hole which simplifies our calcula-
tions. For any possible arrangement of the 2N - 1 mobile
valence shell electrons the hole is located at the vacant atom,
i.e., the Xe ion, it has a positive charge+eand a mass equal to
that of an electron. The hole creation,ci,s

† , and annihilation,
ci,s, operators are defined by the equations

Applying ci,s
† on the neutral cluster state|0′〉, we destroy thes

spin electron which is located at theith Xe atom and this is
denoted by a state|i0〉s:

Similarly

The Hamiltonian we work with is referred to as the Hubbard
Hamiltonian. This is a model of isotropic electron hopping
between different sites in a crystal lattice. The electrons are
assumed to be in a single band, and they interact only when
they occupy opposite spin states of the same atom. It has been
used in the study of electric and magnetic properties of solids
and clusters9,24,25as well as of one- and two-dimensional model
lattices.26 We arrive at this model for the description of the
charge migration inside the xenon clusters by making a series
of approximations.
The mass of the Xe atoms is 5 orders of magnitude greater

than the mass of the electron. The ground state of the clusters,
which we calculate later, has an energy difference from the first
excited state of the order of 1 eV. The spacing of the
corresponding vibrational states of the nuclei, calculated from
the neutral interaction potential in the harmonic approximation,
is of the order of 0.05 eV. Therefore, the splitting of the states
of the hole is strong enough that the motion of the nuclei will
not affect their separation in a significant manner. We also find
that the ground state of the hole is not degenerate, even when
the atoms are occupying the exact sites of the two configurations
that we use. Consequently, the clusters do not exhibit the Jahn-
Teller effect. These observations validate the Born-Oppen-
heimer approximation, according to which we consider the
electronic states parametrically dependent on the motion of the
nuclei. Furthermore, we assume that the motion of the nuclei
obeys the laws of classical mechanics.
The frozen core approximation implies that the core electrons

have much higher excitation energies than the valence electrons
and their states are not affected by the interatomic distance. They
can be treated as a charge distribution with Pauli exclusion
forces that causes a repulsive potential for the motion of the
valence electrons. The valence electrons experience a pseudo-

potential given by the average of this repulsive potential of the
core electrons and their interaction with the nucleus.
Next we employ the tight binding approximation. If the Xe

atoms are very far apart, the hole will be located at a certain
site and this situation will be represented with the state|i0〉s,
with i labeling the ion Xe+ ands the spin state of the vacant
orbital. As we lower the spacing of the sites these states will
eventually start overlapping and will no longer be orthogonal.
This overlapping is the result of the electron exchange integral
between the ion and the neighboring atoms. If this overlap is
small, tight binding limit, we can ignore the excited states of
the Xe atoms and we can construct an orthogonal basis set{|i〉s}
as follows:

with Nij ) 〈i0|j0〉. The orthogonality of these states to the first
order ofNij is

Our model Hamiltonian will be constructed as being diagonal
in the {|i〉} representation.
The Hamiltonian, in which we incorporate all the above

assumptions, in the second quantization notation is

The first term of this Hamiltonian corresponds to the diagonal
matrix elements in the{|i0〉s}, the nonoVerlapping states
representation. TheVi

el is the electrostatic energy of the
cluster for the charge located at theith Xe atom, andR is a
3N-dimensional vector denoting the positions of theN atoms.
The second term corresponds to the nondiagonal elements

in the {|i0〉s} representation. Theh(rij) is the hopping energy
between theith and jth atoms. This is half of the energy
difference between theI (1/2)g and I (1/2)u states of Xe2+. The
data are taken from the Xe2+ potential curves derived by Wadt.27

There are three dipole-allowed transitions for Xe2
+: I (1/2)u f

I (3/2)g, I (1/2)u f I (1/2)g, and I (1/2)u f II (1/2)g. The first two
dissociate in the same asymptote Xe+ Xe+(2P3/2), but theI (1/
2)u f I (3/2)g is very weak and we have neglected its contribution.
Of course, this, as well as the other approximations we have
used, need to be verified eventually with more detailed
calculations. The third,I (1/2)u f II (1/2)g, dissociates in the Xe
+ Xe+(2P1/2) asymptote, which is∼1.5 eV above,27 10 times
higher than the total binding energy per atom in the studied
clusters. The hopping energy of theI (1/2)u f I (1/2)g transition
is also used in a previous calculation7 and it allows a direct
comparison of our results with theirs.
It is worth mentioning that our Hamiltonian for the singly-

charged clusters can be reduced to the Hu¨ckel Hamiltonian28

under the assumption that the hopping of the hole occurs only
between the nearest-neighbor xenon atoms and that all the sites
are equivalent. The first assumption is physically reasonable
for our clusters, since the hopping potential becomes almost
zero for interparticle separations greater than the nearest-
neighbor distance, but the second one neglects the role of the

|0′〉 ) a1,-1/2

† a1,+1/2

† ...aN,-1/2

† aN,+1/2

† |0〉

) ∏
i

∏
s

ai,s
† |0〉 (13)

ci,s
† ) (-1)(1/2)+sai,s (14)

ci,s ) (-1)(1/2)+sai,s
† (15)

ci,s
† |0′〉 ) |i0〉s (16)

ci,s|i0〉s ) |0′〉 (17)

|i〉s ) |i0〉s - 1/2 ∑
j*1

Nij|j0〉s (18)

〈j|i〉 ) 〈j0|i0〉 -1/2 ∑
k*j

Njk〈j0|k0〉 -1/2∑
l*j
Nli〈l0|i0〉 +

1/4∑
k*j

∑
l*j
NjkNli〈j0|k0〉〈l0|i0〉 ) 0+ O(Nij

2) (19)

〈i|i〉 ) 1+ O(Nij
2) (20)

H ) ∑
s
∑
i

ci,s
† ci,sVi

el(R) + 1/2∑
s,s′

∑
i<j
[ci,s
† cj,s′ + cj,s′

† ci,s]h(rij)

(21)
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polarization field which drives the charge toward the center of
the cluster. The Pariser-Parr-Pople29 model, which allows
the sites to differ from one another, and, in addition to the
Hückel model features, includes the interactions between the
hopping charges, is equivalent to our Hamiltonian. The
similarity of these models for spin-free systems has already been
shown.30,31

We assume that the induced dipoles are instantaneously
oriented toward the charged atom. This assumption is warranted
by the relative magnitudes of the hopping frequencyωh ) h(rij)/
2p and the characteristic frequencies of the electronic spectrum
of Xe. In particular, the time-dependent atomic polarizability
is

wheree andme are the electron charge and mass, respectively,
andωn0 is the Bohr frequency between thenth excited state
and the ground state of Xe,fn0 the oscillator strength, andω
the frequency of the electric field. The Xe atom’s first persistent
spectral line is at 2.65 eV, thus allωn0

2 are greater than 1031

s-2. We consider the frequency of the electric field equal to
the hopping frequency of the hole. The maximum value that it
can take is at the minimum of the ground stateI (1/2)u, and its
square isωh

2 = 1029 s-2, 2 orders of magnitude smaller than
ωn0

2. Therefore, we can neglect the dependence of the
polarizability on the frequency of the charge motion.
In our calculations we did not take into account any coupling

between spin and position states. It is also important to
emphasize that our Hamiltonian describes the charge hopping
in an isotropic manner. The hopping probability of the hole
between any two atoms depends exclusively on their distance,
and it is not affected by their relative orientation. Of course
this is not true in the real clusters, since p states are involved
and the hopping energy must depend on the orientation of the
atoms.
At each time step we derive the matrix elements of our

Hamiltonian in the{|i0〉s} representation. We solve for the
ground state eigenvectorΨ(R) and the two lower eigenvalues,
E0(R) andE1(R), using the Lanczos method.32 According to
the Born-Oppenheimer approximation the xenon atoms experi-
ence a potential equal to the ground state energy of the hole.
The force which is exerted on theith atom with coordinates
(xi,yi,zi) is

We calculate each component of the force vector, applying the
extended Hellman-Feynman theorem.28 This theorem states
that if Ψ(x) is an eigenvector of the HamiltonianH(x), then

Our code evaluates the matrix for the three components of the
N force operators, in the{|i0}〉s representation. The expectation
values of these matrices are obtained by right and left
multiplication with the ground state eigenvector.

III. Results

A. Molecular Dynamics Calculations. In our molecular-
dynamics calculations, we use two different methods of generat-
ing the initial configurations. First, we equilibrate the neutral

clusters at a certain temperature, by proper scaling of the
velocities of the atoms at each step, and we use these positions
and velocities of the Xe atoms as initial conditions for the
charged cluster molecular dynamics. These calculations simu-
late the experimental situation for short times after the ionization
process. As a measure of the stability of the clusters we consider
the distance of the most distant atom from the center of mass
of the cluster. We monitor this distance at each time step, and
if it increases linearly, we know that fragmentation or sublima-
tion has occurred. Clusters made with this method are unstable.
After a few picoseconds, they evaporate by releasing one surface
atom. The lifetimes of these clusters do not possess any
accordance with the magic numbers pattern.
These results are in line with previously reported experimen-

tal33 and computational34 studies. In general, just above the
ionization threshold the binding energy of the neutral clusters
should prevent fragmentation. However, the binding energy
of small rare gas neutral clusters is smaller than the average
photon energy and “none of the experimental spectra can be
considered free of fragmentation effects”.33 In a recent com-
putational study,34 it is reported that clusters Xen+, n < 55, are
subject to rapid evaporation within few picoseconds after their
ionization, and their size reduction continues until they ther-
malize. Only very large clusters, such as Xe55

+, maintain their
original size and simply heat up after ionization.
In the second approach we equilibrate the charged clusters

at the desired temperatures, and we use these positions and
velocities of the atoms as the initial conditions for our molecular
dynamics calculations. This technique simulates the experi-
mental situation for times long enough for the precursor cluster
to accommodate the excess of energy, which is released after
the ionization, by successive evaporations and/or fragmentations.
These clusters are very stable and for temperatures lower than
a third of ε/k (∼70 K) they do not show any tendency to
evaporate after times that can be as long as several hundreds of
picoseconds, regardless of the cluster number.
In both approaches, we notice that the ground state vector

does not possess a firm fixed structure for temperatures greater
than 10K. This is true for both the icosahedral geometry and
the close-packing one. We calculate the charge probability
distribution over the xenon atoms at each time step. In all the
cases we studied we did not find any evidence of a permanent
dimer. Instead we observed dimers, trimers, tetramers, etc. that
appeared as peaks in the probability distribution for certain times
and disappeared later on without following any particular
pattern.
The results of our calculations, of course, cannot prove

whether or not a dimer forms inside a real cluster. Nevertheless,
our model contains explicit physical assumptions that previous
authors have used to support the dimer formation;5,7,35namely,
we calculate the electrostatic interactions using a point polar-
izability model, and we assume that the hopping occurs by the
transition between the ground state and the first nonbonding
state of the Xe2+.
B. Simulated Annealing Calculations. We use our mo-

lecular dynamics code to perform simulated annealing calcula-
tions. This is a minimization method which simulates the
thermodynamic process of the slow cooling of a system: The
slow rate of lowering the temperature diminishes the probability
of ending up in local minima and metastable states when
searching for the global minimum of the energy. We start with
initial velocities sampled from a Maxwell distribution corre-
sponding to a temperature which allows large displacement of
the Xe atoms from their equilibrium positions. We use as initial

R(ω) )
e2

me
∑
n

fn0

ωn0
2 - ω2

(22)

FBi(R)) -∇iE0(R) (23)

∂

∂x
〈Ψ(x)|H(x)|Ψ(x)〉 ) 〈Ψ(x)| ∂∂xH(x)|Ψ(x)〉 (24)
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positions for the atoms inside the clusters both the icosahedral
(Figures 5 and 6) and the close-packing geometries (Figure 3).
The minimum value we find for each cluster number from 10
to 21 is listed in Table 1 for clusters with both geometries. We
cool the clusters by removing kinetic energy through scaling
of the velocities at each time step. We use various scaling rates
and initial sampling temperatures. For each cluster number and
each geometry, we keep the lowest potential we find as its
ground state. These measurements are used for the calculation
of the sublimation energy and of the binding energy of the
charged clusters. The sublimation energy for the cluster number
N is calculated by

When the close-packing geometry is used, we cannot find a
stable 19 particle cluster. There is a sharp maximum at the
cluster number 13 and then the sublimation energy falls
monotonically. The results are similar for the Lennard-Jones
6-12 potential. When we use the icosahedral geometry, we
derive two distinct maximum values of the sublimation energy
for the 13 and 19 cluster numbers. The relative values of the
sublimation energy that we calculate are in absolute agreement
with previously reported values which were derived using a
Lennard-Jones 6-12 potential and the same geometrical struc-
tures.1 The complete investigation of the dependence of the
stability of the magic numbers clusters on their geometry is
beyond the scope of this work. We restrict ourselves to the
study of the effect of the charge and its hopping on the stability

of the Xe clusters. We test how these factors modify the pattern
of the sublimation energy.
As Figure 7 shows, the sublimation energy possesses two

distinct maxima for the cluster numbers 13 and 19 when the
icosahedral geometry is used. This can be directly associated
with the experimentally observed stability of charged clusters
with cluster numbers 13 and 19. The pattern of the sublimation

Figure 3. Initial configuration of cluster with 19 atoms and close-
packing (CP) geometry.

TABLE 1: Calculated Minimum Energies for Neutral and
Charged Clusters

IC geometry CP geometry

cluster size charged neutral charged neutral

10 -1.977 -0.579 -2.034 -0.591
11 -2.170 -0.658 -2.183 -0.672
12 -2.272 -0.759 -2.371 -0.777
13 -2.510 -0.900 -2.597 -0.905
14 -2.580 -0.953 -2.748 -1.006
15 -2.675 -1.029 -2.896 -1.108
16 -2.774 -1.107 -3.04 -1.212
17 -2.928 -1.186 -3.183 -1.312
18 -3.009 -1.289 -3.323 -1.414
19 -3.190 -1.430 -3.463 -1.517
20 -3.252 -1.478 -3.561 -1.597
21 -3.330 -1.546 -3.69 -1.700

Esub(N) ) |Emin(N) - Emin(N- 1)| (25)

Figure 4. Initial configuration of cluster with 13 atoms and icosahedral
(IC) geometry.

Figure 5. Initial configuration of cluster with 19 atoms and icosahedral
(IC) geometry.

Figure 6. Initial configuration of cluster with 23 atoms and icosahedral
(IC) geometry.
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energy versus cluster numbers is changed from that of the neutral
clusters which is also depicted in the same figure, but it still
has the two maxima corresponding to the first two magic
numbers.
When the close-packing geometry is employed, Figure 8, the

inclusion of the electrostatic interaction and the Quantum effects
does not change the pattern of the sublimation energy. The

sublimation energy is simply moved to higher values, as we
include these factors, without changing its dependence on the
cluster number. As in the case of the neutral clusters, only the
stability of the magic number 13 is predicted.
From the same calculations, we derive asymptotically the

adiabatic ionization potential in the bulk as the difference
between the atomic ionization potential and the binding energy.
The binding energy is equal to the difference between the
minimum energy of the charged and neutral cluster, for which
the experimental value is 9.8 eV.18 For clusters with 21 atoms
our model gives 10.1 eV for the Close-Packing geometry and
10.3 eV for the icosahedral geometry (Figure 9). The values
of the ionization potentials for clusters from 10 to 20 are also
in good agreement with experimental results.19 These values
have an average difference of 0.14 eV from the calculated values
with icosahedral geometry and 0.05 eV for the close-packing
one. Nevertheless, the pattern of the experimental values seems
closer to that of the icosahedral geometry.9 These experimental

Figure 7. Sublimation energies for neutral and charged icosahedral
(IC) clusters.

Figure 8. Sublimation energies for neutral and charged close-packing
(CP) clusters.

Figure 9. Adiabatic ionization potential.

Figure 10. Cluster of 25 Xe atoms with icosahedral geometry and
two attached pentagonal caps.
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results have an uncertainty equal to 0.1 eV. An electronic
structure calculation has been published that considers the
delocalization of the hole along one direction due to the p nature
of the empty orbital.36 According to this work, the charged
clusters of up to 19 atoms consist of either a Xe3

+ or Xe4+

surrounded by polarized neutral atoms. The calculated adiabatic
ionization potential for the Xe19+ by this model is 10.1 eV, the
corresponding value we calculate is 10.3 eV (for the icosahedral
geometry). The agreement of these values gives us confidence
that our isotropic hopping approximation describes the essential
physics of the charged clusters.
The ground state eigenvector|Ψ0(R,s)〉 expanded in terms

of our basis set is

Consequently, the probability of finding the hole located at the
ith atom is equal to|bi|2. Our code calculates the distribution
of this probability over all the Xe atoms of the clusters at each
time step. A dimer would be manifested by two large peaks in
this distribution at the atoms which would constitute the dimer.
In addition, we would expect that the distance between these
two particular atoms to be smaller than the average nearest-
neighbor distance and closer to the interparticle separation in
the Xe2+ molecular ion. In our simulated-annealing calculations
on clusters with close-packing geometry we did not find any
evidence of dimer formation. In the case of clusters with
icosahedral geometry we did not find dimer formation for
clusters having up to 17 Xe atoms. For cluster numbers 18,
19, and 20, the probability distribution possesses relatively
higher values at the two Xe atoms, which are in the interior of
the clusters, denoted by B and C in Figure 5. However, the
distance between these two atoms did not become smaller, and
the clusters retained their icosahedral geometry. In all our
simulated annealing calculations, the atoms are free to move in
any direction that lowers the energy of the clusters, and there
is not any constraint to maintain the geometrical structure. As
the cluster number increases to 23, a cluster configuration that
corresponds to a closed shell of the icosahedral geometry (Figure
6), the two peaks at the labeled atoms A and B become even
smaller, and a third weak peak appears at the atom C.
In order to search for the possibility that the formation of a

dimer corresponds to a local minimum of the potential energy,
we performed calculations with initial conditions propitious to
dimer formation. In particular, we started our calculations with
the two atoms (B and C in Figure 5) close to each other at the
separation distance of the minimum of energy of Xe2

+. We
also adjusted the positions of the other atoms in order to keep
their interaction with the dimer in the bound regime of the
Barker et al. potential. The result of the simulated-annealing
with this initial configuration was that the two atoms, which
were in close proximity in the beginning, moved apart,
approaching the separation that the icosahedral geometry
provides for them.
C. Hole Hopping Directionality. In the real clusters, the

hopping of the charge between the xenon atoms must depend
on the relative orientation of their p orbitals. The isotropic
hopping of our model cannot describe this effect. The explicit
account of the p orbitals would increase considerably the
dimensionality of the problem and the computing time of our
calculations. As an alternative we performed a series of
calculations restricting the hopping only in one direction as a
limiting case of the effect of the p character of the empty orbital.

We used the icosahedral geometry for clusters of up to 19 atoms.
We further continued building artificial clusters of up to 25
atoms by adding a pentagonal cap along the hopping axis. The
hopping axis was chosen to be the line which joins the interior
atoms in the Xe19+ (B and C in Figure 5) and is taken to be the
z axis. We call the atoms that lay on this axisaxial, and the
restperipheral. We arrived at this approximation by considering
the following:
i. The overlap of thepz orbitals of the peripheral atoms is

zero. The overlap of theirpx andpy orbitals with thepz of the
axial atoms is 10 times smaller than thepz overlap of the axial
atoms,36 and in a first approximation it can be neglected.
ii. The charge exchange lowers the energy of the clusters.

Therefore, we assume that the charge must be delocalized
preferably along the direction on which lies the maximum
number of atoms, thez axis that we defined above.
We calculate the probability distribution of the charge

distribution over the atoms which lay on the hopping axis, and
the results are in Table 2. In these measurements it is clear
that the delocalization is counterbalanced by the forces that the
induced dipoles exert on the charge. The electrostatic energy
takes its minimum value when the charge is located at the center
of mass of the clusters. Therefore, the induced dipoles tend to
localize the charge at this point, opposing an equipartition of
the charge probability over the axial atoms. These results also
show that a dimer forms as a special case only when the number
of the axial atoms is even.

IV. Conclusions

The validity of our model is ascertained by the agreement of
the adiabatic ionization potentials, which we calculate, with the
experimental values.18,19 The binding energies that our model
results in are very close to the corresponding values which were
derived by other authors in purely quantum mechanical calcula-
tions, explicitly accounting for the p character of the empty
orbital.36 This means that the isotropic hopping of the charge
is an adequate approximation for this level of calculations.
Our model does not result in any dimer formation. Con-

versely, the ground state of our Hamiltonian, at temperatures
close to zero, reflected a spherically symmetric delocalization
of the charge around the central atom, for clusters with the close-
packing geometry. The radial distribution of the charge
probability showed that the most probable location for the charge
was the central atom of the cluster. For the rest of the atoms,
as their distance from the center increased, the probability to
carry the charge decreased rapidly. These results were consis-
tent with our calculation of the electrostatic energy of a singly-
charged dielectric sphere as a function of the distance of the
charge from the center, a continuous matter limit of the clusters.
For clusters with the icosahedral geometry structure the charge
probability distribution differs with the size of the cluster and
it possesses one maximum for clusters up to 17 atoms, two for
18, 19, and 20 atoms and three for 21, 22, and 23 atoms. Again
no dimer was found for these clusters.

TABLE 2: Charge Probability Distribution: Directional
Hopping, IC Geometry

% probability per sitecluster size hopping sites

13 (Figure 4) 3 A B C
11.7 76.54 11.7

19 (Figure 5) 4 A B C D
4.35 45.64 45.64 4.35

25 (Figure 10) 5 A B C D E
1.92 25.03 44.83 25.03 1.92

|Ψ0(R,s)〉 ) ∑
i)1

N

bi|i0〉s (26)
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The formation of the dimer in the work of previous authors
provided a straightforward method to include in the energy of
the clusters the charge exchange energy. Without this term the
calculated binding energies of the clusters, and consequently
the ionization potential, are in noticeable disagreement with the
experimental values. But the assumed dimer required drastic
modifications of the parameters of the classical potential. The
new parameters for the interaction of the dimer with the
surrounding neutral atoms have not been studied at the same
level as the parameters for the interaction between the neutral
atoms, and therefore they must include additional approxima-
tions. Our model does not require any further assumptions for
the classical part of the Hamiltonian and the exchange energy
of the charge is calculated quantum mechanically in an
independent manner.
As for the understanding of the magic number pattern, our

model provides a plausible way to associate the magic numbers
with the maxima of the sublimation energy that the icoshedral
geometry provides. This is so because the hopping of the
charge, and consequently the probability distribution of the
charge over the atoms inside clusters, do not cause any
dislocations in the geometrical structure. Our results show that
the sublimation energies of the neutral clusters and those of
the charged clusters follow the same pattern, the latter being
just shifted above the former. Therefore, the detected magic
numbers for the charged clusters can be related to the stability
of neutral clusters of the same size, though they do not reflect
the stability of the precursor clusters which fragment after
ionization. The dimer assumption of the previous authors
requires a revised geometry for the charged clusters, since the
two Xe atoms of the dimer are 40-50% closer than the average
nearest-neighbors separation.27 The dimer must be the central
core around which the other atoms are attached. In this case
the observed magic numbers cannot any longer be associated
with the closed shells of the icosahedral geometry.
We plan to expand our model toward the description of

doubly charged clusters. This will allow us to study the
coulombic explosion that occurs in these clusters. Furthermore,
we plan to test the applicability of this model for other rare gas
clusters, such as Ar and Kr.
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Appendix: The Dielectric Sphere

Here we solve a continuous matter problem, in order to
examine the analogies of its solution with the results of our
model. We consider a sphere with a dielectric constantε, a
radiusR) 1, and one point charge+e located at a distances
from the center of the sphere. The choice of the coordinate
system is such that the center of the sphere coincides with the
origin, and the charge is on the positivez-axis. The dielectric
constant was calculated from the atomic polarizability of Xe
through the Clausius-Mossotti equation.
The potential of a point charge inside a dielectric sphere

satisfies Poisson’s equation inside the sphere

and Laplace’s equation outside

The usual Coulomb point charge potential satisfies Poisson’s
equation, so the general solution inside is a sum of the Coulomb
term and a solution of Laplace’s equation. Expanding in
Legendre polynomials, we get

Using the usual expansion of the Coulomb potential and
matching normalDB and tangentialEB at r ) 1 gives

with the solution

The total energy for a charge distribution is

The first term can be converted into a surface integral using
the divergence theorem, and evaluated as

The second term is infinite for a point charge. If the charge
is smeared out using, for example, a Gaussian distribution, the
solution can be taken through exactly as above. The solution
of Poisson’s equation in an infinite dielectric is erf(|rb - sb|/
w)/|rb- sb|,wherew is proportional to the width of the Gaussian,
and erf is the error function. We want to eventually take the
limit that the width goes to zero. If the width is small compared
to the distance to the surface of the sphere, then the difference
between the potential from this Gaussian charge distribution
and a point charge will be given by exponentially small terms.
Therefore, in the limit of small width, thebl andcl terms are
identical to those calculated with a point charge, and the first
term calculated above is independent of the Gaussian width for
small enough widths. The second term is the integral over the
Gaussian and the potential. This contains two terms. The first
is the integration of the Gaussian and the error function above.
Since these are both terms that are centered atsb, and the
Gaussian goes to zero rapidly with distance, this integration is
independent of the position of the charge. As the width goes
to zero it diverges. The other term is well behaved in the limit
of the Gaussian going to zero and evaluates to

∇2Φ( rb) ) -(4πeδ3( rb - sb)/ε) (27)

∇2Φ( rb) ) 0 (28)

Φin ) e∑
l

blr
lPl(cosθ) +

e

ε| rb - sb|

Φout ) e∑
l

clr
-l-1Pl(cosθ) (29)

bl + sl

ε
) cl

εlbl - (l + 1)sl ) -(l + 1)cl (30)

cl )
(2l + 1)sl

εl + l + 1

bl )
(ε - 1)(l + 1)sl

ε(εl + l + 1)
(31)

W) -
(ε - 1)e2

8π ∫ d3r∇BΦ‚∇BΦc

) -
(ε - 1)e2

8π
(∫ d3r∇BΦ‚[Φ∇BΦc] -∫ d3rΦ∇2Φc)

(32)

(ε - 1)e2

2
∑
l

l + 1

εl + l + 1
s2l
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Combining these two terms gives the result

whereC is the self-energy which goes to infinity as the Gaussian
width goes to zero, but is independent of position. Taking the
difference in energy (∆W) between having the point charge at
s and having it at the origin eliminates the first term.
The formula for∆W, generalized for any sphere with radius

R, becomes

In order to compare this result with the electrostatic energy of
the studied clusters, we calculate the radius as

whereN is the number of atoms in the corresponding cluster
andσ is the length unit.
The result forW for the charge inside the dielectric sphere is

a hypergeometric function. The Bateman Manuscript Project
Books define the1F2(a,b;c;z) function to be

With z ) (s/R)2, we need the coefficients to agree to within a
normalization of our coefficients

Takinga ) 2, we get

This gives ourl + 1 term in the numerator. The term in the
denominator must be constructed from the ratio ofΓ(b + l)
andΓ(c + l). For any value ofd

To get the hypergeometric formula, we need to choosed ) ε

+ 1. This means we must pick

We then get the result that
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